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Derivation of the wave equation from Maxwell’s equation 

We can for example consider the electric field and start with Faraday’s law: 

∇ × 𝓔 = −𝜇!
𝜕𝓗
𝜕𝑡

 

∇ × ∇ × 𝓔 = ∇ × *−𝜇!
𝜕𝓗
𝜕𝑡 +

 

∇ × ∇ × 𝓔 = −𝜇!
𝜕
𝜕𝑡
(∇ ×𝓗) 

∇ × ∇ × 𝓔 = −𝜇!𝜀!
𝜕"𝓔
𝜕𝑡"

 

We use the identity: 	
∇ × ∇ × 𝓔 = ∇(∇ ∙ 𝓔) − ∇"𝓔	

 

We get: 

−∇"𝓔 = −𝜇!𝜀!
𝜕"𝓔
𝜕𝑡"

 

∇"𝓔 −
1
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With 𝑐! =
#

$%!&!
 

 

Derivation of Helmhotz equation 

We consider the complex representation E(r, 𝑡) = E(r)𝑒'() 

The wave equation simply reduces to: 	

∇"E(r, 𝑡) −
1
𝑐!"

𝜕"E(r)𝑒'()

𝜕𝑡"
= 0 

∇"E(r, 𝑡) +
𝜔"

𝑐!"
E(r)𝑒'() = 0 

∇"E(r, 𝑡) + 𝑘"E(r, 𝑡) = 0 

With 𝑘 = (
*!
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Example of calculating the coherence of a wave. 

Let’s consider a purely monochromatic wave at some fixed point in space. It can be written: U(𝑡) =
𝑈!𝑒'(!). We here assume its phase is null, without loss of generality. 

〈U∗(𝑡)U(𝑡 + 𝜏)〉 =
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𝑇
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〈U∗(𝑡)U(𝑡 + 𝜏)〉 =
1
𝑇
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〈U∗(𝑡)U(𝑡 + 𝜏)〉 = |𝑈!|"𝑒'(!/ 

Similarly, 	
〈U∗(𝑡)U(𝑡 + 𝜏)〉 = |𝑈!|" 

 

We get that 	

𝑔(𝜏) =
〈U∗(𝑡)U(𝑡 + 𝜏)〉
〈U∗(𝑡)U(𝑡)〉

= 𝑒'(!/ 

|𝑔(𝜏)| = 1 

 

A monochromatic wave is a perfectly coherent wave. However, as we will see, such wave does not exist, 
as all light exhibits a finite linewidth. 


